MMOnline
 Главная
  Новости
  Обновления
 MMWiki
  Энциклопедия
  Все страницы
 Учеба
  Расписание
  Материалы
  Статьи
  Аспирантура
  Война
  Кафедры
  Преподаватели
 Работа
  Резюме
 Абитуриентам
  Статьи
  Варианты
 Территория
  ГЗ снаружи
  ГЗ изнутри
 Развлечения
  Тексты
  Галерея
  Анекдоты
  Задачки
 Форум
 Download
 Ссылки
Карта сайта Карта сайта
О проекте О проекте
Поиск Поиск

Новости

14.02.07 23:32  Заседание Московского Математического Общества 20 февраля 2007 г.

версия для печати

Заседание Московского Математического Общества 20 февраля 2007 г.
(начало в 18 час. 10 мин., ауд.16–24 Главного здания МГУ)

А.М. Райгородский. Об одном принципе «альтернирования» в комбинаторной геометрии.

Комбинаторная геометрия – это современная и бурно развивающаяся математическая дисциплина, которая окончательно сформировалась лишь в XX веке. И в комбинаторной геометрии есть несколько проблем, сыгравших наиболее значительную роль в становлении этой науки. Здесь следует особенно выделить проблему Борсука о разбиении множеств на части меньшего диаметра и проблему Нелсона-Эрдеша-Хадвигера о раскрасках метрических пространств. Если проблема Борсука берет свое начало из гипотезы Борсука о том, что всякое ограниченное неодноточечное множество в $R^n$ может быть «разрезано» на $n+1$ «дольку» меньшего диаметра, то проблема Нелсона – Эрдеша – Хадвигера сводится к отысканию минимального количества цветов, в которые можно так раскрасить все точки некоторого метрического пространства, чтобы расстояние между одноцветными точками не принадлежало заданному наперед множеству положительных вещественных чисел.

В начале 80-ых годов XX века П. Франкл и Р.М. Уилсон добились прорыва в проблеме Нелсона-Эрдеша-Хадвигера, а десять лет спустя Дж. Кан и Г. Калаи неожиданно показали, что с помощью идей Франкла-Уилсона удается строить контрпримеры к гипотезе Борсука. Таким образом, была установлена удивительно глубокая связь между двумя задачами.

Результаты Франкла-Уилсона и Кана-Калаи были слегка улучшены автором в конце 90-х. Однако дальнейших продвижений добиться не получалось. Недавно автором был предложен метод, который из некоторых соображений представляется разумным называть методом (или принципом) «альтернирования». С помощью этого принципа автору удалось усилить ряд прежних результатов, а также продемонстрировать еще более глубокие связи между задачами. Кроме того, возникло несколько новых приложений метода.

В докладе будет изложена история вопроса и рассказано об идеях, на которых основан принцип альтернирования.


Московское Математическое Общество



Последние обновления

Аспирантура в области Computer science в Порту (Португалия)
14.06.11 01:21 | MMOnline
Applications are accepted to award one PhD research grant (within the scope of ENSURE project), funded by the European Union/ European Commission through

21 июня Магистратура мехмата МГУ проведет День открытых дверей
05.06.11 20:48 | MsuNews
Магистратура механико-математического факультета Московского государственного университета имени М.В. Ломоносова проводит День открытых дверей, на котором буду представлены магистерские программы по

Сбербанк приглашает выпускников технических факультетов МГУ в целевую магистратуру в ГУ-ВШЭ
10.05.11 22:27 | Новости МГУ
Сбербанк России объявляет о начале целевого набора выпускников технических вузов на обучение по магистерской программе. Занятия на программе будут проходить в вечернее время и по субботам. Для


 Темы
 RSS ленты
 Сайт работает с 29.08.2000, Copyright © 2000−2021 MMOnline.Ru and MMForce.Net,
 Правовая информация Обратная связьУчастие в проектеРазместить рекламу
Rambler's Top100 Service